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Abstract In a smart grid environment, smart meters peri-
odically collect and report information such as electricity
consumption of users to a control center for timely monitor-
ing, billing and other analytical purposes. There is, however,
a need to ensure the privacy of user data, particularly when
the data is combined with data from other sources. In this
paper, we propose a new fine-grained data analysis (here-
after referred to as FGDA) scheme for privacy preserving
smart grid communications. FGDA is designed to compute
multifunctional data analysis (such as average, variance, and
skewness) based on users’ ciphertexts, as well as support-
ing fault tolerance feature. We remark that FGDA can still
function when some smart meters fail. Compared to existing
schemes providing both the properties of multifunction and
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fault tolerance, FGDA is more efficient in terms of computa-
tion overheads. This is because FDGA does not use bilinear
map or Pollard’s lambda method during decryption. We also
demonstrate that FGDA achieves a higher communication
efficiency, as the gateway only needs to send the ciphertext to
the control center once even for different statistical functions.

Keywords Smart grid security · Smart grid privacy ·
Privacy-preserving smart grid communications ·
Finer-grained data analysis

1 Introduction

Due to worldwide interest in energy saving and emission
reduction, green power and sustainable development, smart
grids have also been the subject of recent research focus
[1–3]. This is not surprising due to the potential for smart
grids to improve the quality of service to users, as well as
offering smart grid operators the opportunity to collect and
analyze data to provide better insights into the market (user
preference, usage patterns, etc) that can be used to inform
other decision making. It is, however, important to ensure
the security of the grids to reduce the potential and/or impact
of a successful cyber attack or a natural disaster [4, 5].

With rapid advances in intelligent electronic devices
(IEDs), such as smart meters (SMs), electric vehicles (EVs)
and outdoor smart/Internet-connected “things”, it is essen-
tial to ensure that these components within a smart grid
infrastructure are compliant with international standards and
are designed according to best practices [6, 7]. However,
how to process the data collected by IEDs in a privacy-
preserving way remains one of several research challenges
in smart grid research.
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Generally, a smart grid consists of a control center (CC),
several SMs and several local gateways (GWs). A simple
example is shown in Fig. 1, where each house has an SM
installed. The installed SM periodically collects informa-
tion, such as electricity usage of the IEDs in the house, and
sends it to a local GW. The latter then aggregates data from
all SMs deployed in the same residential area and reports
these aggregated data to CC for further analysis and process-
ing (such as balance electricity load and optimize energy
consumption). In such a communication flow, if the col-
lected data are leaked to an adversary A (e.g. by exploiting
vulnerabilities in the deployed SMs), then A can use these
data to analyze individual user habits, behaviors, activities
and even preferences. For example, a low, or lack of, daily
electricity consumption indicates that the house owner may
be away, while an extremely high electricity consumption
during certain times of the day may help an attacker plan
their malicious activities (e.g. in kidnapping for ransom, or
to steal). Also, a significant higher than average electricity
usage from a particular user may also suggest that the partic-
ular address is growing cannabis or marijuana. Undeniably,
privacy-preservation of user data is a topic of interest for
smart grid operators as well as users.

In order to protect user’s privacy, a number of public-
key cryptosystems have been employed for smart grids (see
[8–17]). One of the most popular systems is the Paillier
scheme [18], whose additive homomorphic property enables
a GW to compute addition operations on the encrypted
data. However, Paillier scheme uses the same decryption
key for the original data and the aggregated data; thus, any-
one who obtains the decryption key can decrypt not only
the final aggregated result but also the individual ciphertext.
This contradicts the principal of user privacy-preserving. In
addition, overheads of the decryption are significant and
will increase with the size of the plaintext space. Another
popular system is Boneh-Goh-Nissim cryptosystem [19].
However, the computation overheads due to the Bilinear

map and the limitations of the plaintext space make it diffi-
cult to be applied in practice. Most existing schemes such as
those reported in [14, 16] can be used to compute only the
summation (or average) of user data, which limits the ability
of CC to perform other essential and complex statistical and
data analysis. In other words, how to perform complex sta-
tistical and data analysis of user data without compromising
user privacy remains a research challenge and opportunity.

Chen et al. proposed a multifunctional data aggregation
(MuDA) scheme [10], designed to achieve privacy-preserving
aggregation of multiple functions such as average, variance,
and one-way ANOVA. MuDA, however, uses Pollard’s
lambda method in decryption to obtain the aggregation
value, which is computationally expensive. In order to
improve the efficiency of the MuDA scheme and enable CC
to compute more complex statistical operations in a privacy-
preserving way, we propose a fine-grained data analysis
(FGDA) scheme for the smart grid communications.

The main contributions of the proposed FGDA scheme
are three-fold:

– Different from most existing schemes, FGDA provides
fault tolerance for users. That is, FGDA can still func-
tion even some SMs fail to report the electricity usage
data.

– FGDA allows CC to compute more statistical functions.
In our FGDA scheme, each SM needs to report power
usage data in privacy preserving form only once and CC
obtains not only the summation, but also any other val-
ues such as average, variance, and skewness of the user
usage data. With this fine-grained data analysis, CC can
make better decisions.

– Compared to existing similar schemes that have both
multifunction and fault tolerance, FGDA does not use
either bilinear map or Pollard’s lambda method in
the decryption. Thus, FGDA has a lower computation
overhead. Furthermore, FGDA enables CC to compute

Fig. 1 A simply smart grid
scenario
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different statistical operations on the same ciphertext
data from GW, while other related schemes require
different data for different statistical operations. This
allows FGDA to achieve a higher communication effi-
ciency because it reduces the number of transmission to
only one.

The rest of this paper is organized as follows. In Section 2,
we review related work. We introduce the system model,
security model and design goal in Section 3. The basic
FGDA scheme and the advanced version are presented in
Section 4 and Section 5, respectively. We give the secu-
rity analysis in Section 6 and the performance evaluation in
Section 7. Conclusion is drawn in the last section.

2 Related work

There are a number of data aggregation schemes designed
for smart grid communications in the literature. In earlier
literature, such as those of [20–22], aggregation security is
achieved in a hop-by-hop manner. Specifically, electricity
usage data are encrypted before reporting to a local GW,
which then decrypts all received data for aggregation. After
that, GW encrypts the aggregated result and forwards the
encrypted data to CC. Consequently, such schemes have low
efficiency. Furthermore, to protect users’ privacy, there is a
need to establish a secret key between the sender and the
neighbors, which increases the communication costs.

Due to the proposal of homomorphic encryption tech-
niques, a number of efficient privacy-preserving aggrega-
tion schemes have been proposed for smart grid commu-
nications [8–17]. The homomorphic property allows an
aggregator (GW or CC in general) to perform operations
directly on ciphertexts under the same key, without the
need to first decrypt the data. For example, Lu et al. [14]
proposed an efficient privacy-preserving data aggregation
scheme in which CC can obtain a multidimensional electric-
ity usage data of users by employing Paillier cryptosystem
and a superincreasing sequence. The scheme can signifi-
cantly improve communication efficiency and satisfy the
real-time data collection requirements in smart grid com-
munications. Sui et al. [23] proposed a robust secure data
aggregation scheme using the Chinese Remainder Theorem
and hash-based message authentication codes. However, the
hop-by-hop communication mode in this scheme increases
the communication costs.

In any real-world smart grid deployment, it is likely to
have a few malfunction SMs. Therefore, Shi et al. [16]
proposed a diverse grouping-based aggregation protocol. In
their scheme, a key management center (KMC) classifies all
SMs into different groups according to the distribution of
their lifetimes. For each group, KMC distributes a random

key ki for each SM in this group such that the summation
of all keys is equal to zero under module operation. In the
event that some SMs fail to report the data, the aggregated
data can still be decrypted using brute-force. However, solv-
ing the discrete logarithm problem significantly increases
the computation overheads. In [9], the authors proposed a
privacy-preserving data aggregation scheme with the ability
of fault tolerance of both SMs and servers. In their scheme,
when some SMs malfunction, a trusted authority (TA) will
provide dummy ciphertexts (instead of the malfunctioned
SMs) to the CC. This scheme uses the threshold secret
sharing technology to handle the failure of servers.

A common limitation of the schemes mentioned above
is that they can only be used to compute the summation of
the usage data, while CC may need to perform more statis-
tical analysis to manage the entire smart grid. In order to
solve this problem, Lu et al. [10] proposed a multifunctional
data aggregation scheme, which supports several aggrega-
tions including average, variance, and one-way ANOVA.
The scheme needs to make several bilinear pair operations
during aggregation and uses the Pollard’s lambda method to
decrypt the aggregated results by brute-forcing. However,
these are computationally expensive operations.

Seeking to address existing limitations, we propose an
efficient privacy-preserving aggregation scheme, FGDA,
for smart grid communications in this paper.

3 Models and design goal

In this section, we introduce the system model, security
model, and design goal for privacy-preserving smart grid
communications.

3.1 System model

In this work, we mainly focus on the challenge of allow-
ing CC to compute more data analysis (such as average,
variance, and skewness) in a privacy-preserving and fault
tolerant way. We consider a typical model (see Fig. 2),
which includes a user set U = {u1, u2, · · · , un} living in
a residential area (RA), a trusted authority TA, a control
center CC, and a local gateway GW for RA.

– TA: TA is a trusted authority in charge of the entire
system (e.g. CPS Energy in Texas), and whose main
duties include initializing the system and distributing
keys for CC and the users. In general, TA will be offline
after initializing the system. In other words, it would not
directly participate in the communication unless some
exceptions occur in the reporting.

– CC: CC acts as an indispensable “brain” of a smart grid,
whose duty is to collect users’ near real-time electricity
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Fig. 2 A typical system model

usage data, compute various statistics of these data, and
make decisions for the smart grid. In this paper, CC
can compute not only the summation of users’ data,
but also average, variance, and skewness. For example,
by computing the summation of users’ data, CC can
make real-time power pricing decisions [24, 25], detect
power leakage [26]. Also, by computing the variance of
users’ data, CC understands the uniformity of electric-
ity usage distribution; and by computing the skewness
of users’ data, CC knows the difference between sample
distribution and normal distribution, and the distribution
of the users’ electricity usage data. With such fine-
grained data analysis, CC can make informed decisions
for smart grid operation.

– GW: GW is a powerful entity in this system, which col-
lects user usage data and forwards the aggregated result
to CC. We assume that GW will report user identities
to TA in the event that any user’s SM malfunction; oth-
erwise, it will not be possible to replace or repair the
malfunctioned SM.

– SMs: For each user ui ∈ U , there is a unique SMi that
periodically collects and reports the electricity usage
data of the IEDs of ui to GW.

3.2 Security model

We assume that there is a probabilistic polynomial time
(PPT) adversaryAwhose goal is to compromise the privacy
of as many users as possible. A is not only able to eaves-
drop on the communications among the users, GW, and CC,
but is also capable of compromising the database of CC to
exfiltrate the stored data or any other messages. Further-
more, GW and CC are assumed to be honest-but-curious. In
other words, both parties will not deviate from the defined

protocol, but will attempt to learn private information of the
users.

We will now consider the security requirements for a
smart grid.

– Data Confidentiality: SMs transmit the electricity
usage data to GW. Because these data are related to
user behavior and habits, it might be used to analyze a
targeted user’s sensitive information. Thus, GW should
be able to aggregate user data in a privacy-preserving
way (i.e. in a ciphertext form). Then, the users’ data
confidentiality can be assured.

– Authentication and Data Integrity: Determining
whether an encrypted report is sent from a legitimate
user is important in smart grid communications. The
final result may be inaccurate due to the interferences
made byA, who might impersonate a “honest” user and
send a report to GW. The malicious operations should
be detected and GW accepts only the reports from legit-
imate users. If A compromises CC’s database, then any
user’s private data cannot be disclosed since the values
in the database are not about an individual user’s elec-
tricity usage data. This allows user data to be protected
and the integrity of users’ data assured.

In addition, the goal of A is to violate the users’ pri-
vacy. In the security analysis, we demonstrate that A is
unable to infer the users’ private keys. Thus, the security
of communication flows in our proposed scheme can be
guaranteed.

3.3 Design goal

Under the aforementioned system model and security
model, our design goal is to develop an efficient fine-
grained data analysis scheme while preserving user data
privacy in smart grid communications. The following targets
should be achieved.

– Computations of fine-grained data analysis should be
allowed. In order to ensure a smooth operation of
the smart grid and detect abnormal/suspicious condi-
tions, CC should be able to perform complex statistical
operations of the user data, such as average, variance,
and skewness. It is important to also ensure that the
proposed scheme allows GW to compute aggregation
without decryption, and only CC can decrypt the final
result.

– Security requirement should be satisfied. If the commu-
nications in smart grids are insecure, then the users will
not use the system. In addition, any security leakage or
compromise of user data may result in civil litigation
against the smart grid operator, resulting in financial
and legal implications or consequences.
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– Efficiency of communication should be achieved. In
order to reduce the computation overheads and com-
munication costs, the users should be able to encrypt
the electricity usage data and report the encrypted data
to GW only once in a billing/collection period. CC
can then perform several statistical operations on the
user data; thus, resulting in a significant reduction of
computation overheads and communication costs.

4 Basic FGDA scheme

The basic FGDA scheme presented in this section consists
of five components, namely: system initialization, key gen-
eration, user report generation, privacy-preserving report
aggregation, and secure report reading.

4.1 System initialization

In the initialization procedure, TA bootstraps the entire sys-
tem. Given a security parameter κ,TA chooses a large prime
number p satisfying |p| = κ and a secure hash function
H : {0, 1}∗ → Z

∗
p. The system parameters are params :=

(p, H).

4.2 Key generation

In this phase, TA distributes the private keys to each user in
U = {u1, u2, . . . , un} and CC as follows.

– For each user ui ∈ U, i = 1, 2, . . . , n, TA chooses a
random number αi ∈ Z

∗
p and sends αi to ui as his/her

private key via a secure channel.
– TA computes α0 ∈ Z

∗
p such that

1 = α0 ·
n∏

i=1

αimodp4 =
n∏

i=0

αimodp4 (1)

and sends α0 to CC as its private key via a secure
channel.

4.3 User report generation

Assume that the reporting time points are fixed as T =
{t1, t2, . . . , t�} for a sufficient long runtime period and the
power usage data of user ui at time point tγ is mi,γ , 1 ≤
i ≤ n, 1 ≤ γ ≤ �. In practice, the electricity usage data
for each residential user should not be extremely high (and
this is a sensible expectation). Thus, we have the following
relational assumption:

M = max{mi,γ |1 ≤ i ≤ n, 1 ≤ γ ≤ �} < 3
√

p/n. (2)

Fig. 3 Communication flows of the basic FGDA scheme

At time point tγ , each user ui ∈ U collects its usage data
mi,γ and performs the following steps (refer to Fig. 3):

– ui computes a hash value

hi = α
H(tγ )

i modp4

with his/her private key αi for the reporting time
point tγ .

– ui computes

C̄i = (1 + mi,γ · p) · himodp4

as the encrypted version of data mi,γ .
– ui reports C̄i to GW.

4.4 Privacy-preserving report aggregation

As shown in Fig. 3, after receiving the reporting messages
of all users in U , GW computes the encrypted aggregation
under different modules according to the maximum degree
of statistical functions (as polynomial functions of n vari-
ables) required for various applications. Specially, if the
maximum degree of considering statistic functions is λ, then
the modulus should be set to pλ+1. In this paper, we con-
sider three statistical functions, namely: average, variance,
and skewness, of which the skewness has the maximum
degree 3. Thus, we set the modulus to be p4. That is, GW
computes

C =
n∏

i=1

C̄imodp4

=
n∏

i=1

(1 + mi,γ · p) · hi mod p4

=
n∏

i=1

(1 + mi,γ · p) · α
H(tγ )

i mod p4

=
n∏

i=1

(1 + mi,γ · p)

(
n∏

i=1

αi

)H(tγ )

mod p4.

Then, GW reports C to CC for the fine-grained data analysis.
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4.5 Secure report reading

After receiving the encrypted aggregation result C from
GW, CC can compute multiple statistical functions based on
the different requirements.

4.5.1 Average

If CC wishes to know the average of the electricity usage
data at time point tγ , then it computes the following:

– With the private key α0, CC computes

S′ = C · α
H(tγ )

0 modp2

=
n∏

i=1

(1 + mi,γ · p)

(
n∏

i=1

αi

)H(tγ )

α
H(tγ )

0 mod p2

=
n∏

i=1

(1 + mi,γ · p)

(
α0 ·

n∏

i=1

αi

)H(tγ )

mod p2

=
n∏

i=1

(1 + mi,γ · p) mod p2

= 1 + p ·
n∑

i=1

mi,γ .

The last two equations hold because we have∏n
i=0 αi = 1modp2 by Eq. 1 and

∑n
i=1 mi,γ < p by

Eq. 2, respectively.
– CC obtains the summation of all user usage data as

S = S′ − 1

p
=

n∑

i=1

mi,γ .

– The average of all user usage data is straightforward to
compute:

A = 1

n
· S.

It is clear that the usage data mi,γ of each individual user ui

at time point tγ is protected during the calculation processes.

4.5.2 Variance

The variance has a central role in statistics and it infor-
mally measures the spread of the set of user electricity usage
data from their average for smart grids. With the encrypted
aggregation data C received from GW and the summation
S (or the average A) computed in Section 4.5.1, CC further
makes the following computations for the variance.

– CC computes

B = C · α
H(tγ )

0 mod p3

=
n∏

i=1

(1 + mi,γ · p)

(
n∏

i=1

αi

)H(tγ )

α
H(tγ )

0 mod p3

=
n∏

i=1

(1 + mi,γ · p)

(
α0 ·

n∏

i=1

αi

)H(tγ )

modp3

=
n∏

i=1

(1 + mi,γ · p) mod p3

= 1 + p · S + p2 ·
∑

1≤i<j≤n

mi,γ mj,γ .

The last two equations hold because we have
∏n

i=0 αi =1
mod p3 by Eq. 1 and

∑
1≤i<j≤n mi,γ mj,γ <p by Eq. 2,

respectively.
– CC obtains

B1 = B − 1 − p · S

p2
=

∑

1≤i<j≤n

mi,γ mj,γ .

– With S and B1, CC can get

B2 = S2 − 2 · B1

=
(

n∑

i=1

mi,γ

)2

− 2
∑

1≤i<j≤n

mi,γ mj,γ

=
n∑

i=1

m2
i,γ .

– The variance of the users’ electricity usage data can be
computed as

V = 1

n
· B2 − 1

n2
· S2.

4.5.3 Skewness

The skewness is a measure of the asymmetry of the prob-
ability distribution of a random variable about its mean.
When CC needs to know the skewness of electricity data
sample, it operates as follows.

– With the encrypted aggregation data C and its private
key α0, CC computes

C1 = C · α
H(tγ )

0 mod p4

=
n∏

i=1

(1 + mi,γ · p)

(
n∏

i=1

αi

)H(tγ )

α
H(tγ )

0 mod p4
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=
n∏

i=1

(1 + mi,γ · p)

(
α0 ·

n∏

i=1

αi

)H(tγ )

mod p4

=
n∏

i=1

(1 + mi,γ · p) mod p4

= 1 + pS + p2B1 + p3
∑

1≤i<j<k≤n

mi,γ mj,γ mk,γ .

The penultimate equation and the last equation hold
because we have

∏n
i=0 αi = 1modp4 by Eq. 1 and∑

1≤i<j<k≤n

mi,γ mj,γ mk,γ < p by Eq. 2, respectively.

– CC computes

C2 = C1 − 1 − pS − p2B1

p3

=
∑

1≤i<j<k≤n

mi,γ mj,γ mk,γ .

– CC gets C3 as

C3 = 3 · C2 + S · (B2 − B1) =
n∑

i=1

m3
i,γ .

The above equation holds because we have
n∑

i=1

m3
i,γ − 3 · C2

=
n∑

i=1

m3
i,γ − 3

∑

1≤i<j<k≤n

mi,γ mj,γ mk,γ

=
(

n∑

i=1

mi,γ

)⎛

⎝
n∑

i=1

m2
i,γ −

∑

1≤i<j≤n

mi,γ mj,γ

⎞

⎠

= S · (B2 − B1).

– CC obtains the skewness of user electricity usage data
as

W =
C3 − 3

n
SB2 + 2

n2
S3

nV
√

V
.

5 Advanced FGDA scheme

In this section, we present an advanced version of the basic
FGDA scheme described in Section 4. In the basic scheme,
each user ui ∈ U introduces the “disturbed” item α

H(tγ )

i

into his/her ciphertext and any adversary is unable to dis-
close the true electricity usage data of ui without the private
key αi . On the other hand, as shown in Eq. 1, the product of
the n private keys αi (1 ≤ i ≤ n) of users and the private
key α0 of CC is designed to be 1 modulo p4. This enables
CC to cancel out the disturbance during the decryption pro-
cesses and recover the summation of all users’ data without

learning any individual user’s data. User privacy is, thus,
protected.

A major limitation of the basic FGDA scheme is that it
is not fault tolerant. That is, if any single SM fails to report
the data or any data sent from legal SMs are tampered by
an adversary, CC would not be able to learn anything as the
disturbance in reported data cannot be canceled out. This is
a realistic issue that needs to be resolved, as hardware fail-
ure or attacks are unavoidable in practice [10]. Thus, we
propose the advanced FGDA scheme with message authen-
tication to ensure the authenticity of reported data and locate
the malfunction SMs in real-time. The new scheme has five
components, described in the following subsections.

5.1 System initialization

Given a security parameter κ , TA chooses a large prime
number p satisfying |p| = κ and a secure hash function
H : {0, 1}∗ → Z

∗
p. The system public parameters are

params = (p, H).

5.2 Key generation

TA distributes a private key αi ∈ Z
∗
p to each user ui in

U = {u1, u2, . . . , un} and a private key α0 ∈ Z
∗
p to CC

via secure channels, such that 1 = α0 · ∏n
i=1 αimodp4 (i.e.

Eq. 1 in Section 4.2). Furthermore, we assume that there
exists a session key Kui−GW between each user ui and GW,
i = 1, 2, . . . , n.

5.3 User report generation

Similar to Section 4.3, we assume that the reporting time
points are {t1, t2, . . . , t�} and each user ui has an identity
IDi and its electricity usage data is mi,γ at time point tγ ,
1 ≤ i ≤ n, 1 ≤ γ ≤ �. Further, we denote by Uγ the set of
users whose SMs are functioning at time point tγ . To report
mj,γ to GW, each user uj ∈ Uγ (refer to Fig. 4):

– computes hj =α
H(tγ )

j modp4 with his/her private key αj ;

Fig. 4 Communication flows of the advanced FGDA scheme
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– computes the encrypted data

C̄j = (1+mj,γ ·p)·hj = (1+mj,γ ·p)·αH(tγ )

j mod p4

and hash value h̄j = H(Kuj −GW, IDj , C̄j ));
– sends (IDj , C̄j , h̄j ) to GW.

5.4 Privacy-preserving report aggregation

At each time point tγ , we assume that GW maintains an ini-
tial empty table denoted by U ′

γ . Upon receiving the report
messages from users at time point tγ , GW executes the
following steps:

– For each message (IDj , C̄j , h̄j ) of user uj , GW checks
whether h̄j = H(Kuj −GW, IDj , C̄j ) with the received
IDj , C̄j and the shared session key Kuj −GW between
the user uj and GW. If yes, then GW accepts the mes-
sage and records the identity IDj in U ′

γ ; otherwise,
GW discards the message as it implies a distortion or a
forgery.

In the following, we denote by Idx1 and Idx2 the
index sets of the users in U ′

γ and U\U ′
γ , respectively.

That is,

Idx1 = {j |uj ∈ U ′
γ } and Idx2 = {k|uk ∈ U\U ′

γ }.

– GW aggregates all valid data by computing

C1 =
∏

j∈Idx1
C̄j mod p4

=
∏

j∈Idx1
(1 + mj,γ · p)

⎛

⎝
∏

j∈Idx1
αj

⎞

⎠
H(tγ )

mod p4.

– For all users uk , k ∈ Idx2, GW sends their identities
IDk to TA for the corresponding dummy ciphertexts.

– For all requirements from GW, TA finds the corre-
sponding private key αk , k ∈ Idx2, in TA’s local
database and computes

C2 =
⎛

⎝
∏

k∈Idx2
αk

⎞

⎠
H(tγ )

mod p4.

TA returns C2 to GW.

– Upon receiving C2 from TA, GW computes the final
aggregated result as

C = C1 · C2 mod p4

=
∏

j∈Idx1
(1 + mj,γ · p)

⎛

⎝
∏

j∈Idx1
αj

⎞

⎠
H(tγ )

·
⎛

⎝
∏

k∈Idx2
αk

⎞

⎠
H(tγ )

mod p4

=
∏

j∈Idx1
(1 + mj,γ · p)

(
n∏

i=1

αi

)H(tγ )

mod p4

and reports the ciphertext C together with the number
r = |Idx1| of the functioning SMs to CC.

5.5 Secure report reading

After obtaining C and r from GW at time point tγ , CC first

cancels out the disturbed item
∏n

i=1 α
H(tγ )

i in C with its
private key α0 by computing

Ĉ = C · α
H(tγ )

0 mod p4

=
∏

j∈Idx1
(1 + mj,γ · p)

(
n∏

i=1

αi

)H(tγ )

α
H(tγ )

0 mod p4

=
∏

j∈Idx1
(1 + mj,γ · p)

(
α0 ·

n∏

i=1

αi

)H(tγ )

mod p4

=
∏

j∈Idx1
(1 + mj,γ · p) mod p4.

Then, by using the index set Idx1 and the integer r (instead
of {1, 2, . . . , n} and n, respectively), CC can compute the
statistic functions average, variance, and skewness of the
r valid usage data {mj,γ |j ∈ Idx1} of the users in Uγ

as in Section 4.5. As an example, the average of the data
{mj,γ |j ∈ Idx1} can be computed in a privacy-preserving
form as follows.

– With Ĉ, CC computes

S′ = Ĉ mod p2 = 1 + p ·
∑

j∈Idx1
mj,γ .

– CC obtains the summation of all valid usage data as

S = S′ − 1

p
=

∑

j∈Idx1
mj,γ .

– The average of all valid data is straightforward to
compute:

A = 1

r
· S.
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6 Security analysis

In this section, we discuss the security issues of the basic
and advanced FGDA schemes. As discussed in Section 3.2,
we consider an adversary A who can eavesdrop on com-
munication flows in the system and compromise CC’s
database(s). We also assume that A can tamper with the
report sent from legitimate SMs. We explain how our pro-
posed schemes can resist attacks launched by A in our
security model.

– User electricity usage data are protected from eaves-
dropping. In order to snoop on users’ individual activi-
ties,Amay hide in RA and eavesdrop on wireless com-
munication flows between the users and GW. Assume
that A has eavesdropped on a ciphertext C̄i = (1 +
mi,γ ·p)α

H(tγ )

i mod p4 of user ui at time point tγ . Since
mi,γ is usually a small value in one time interval, A
may attempt to launch a brute-force attack by exhaus-
tively testing each possible value of mi,γ . Without ui’s
secret key αi , however, A is unable to cancel out the

disturbance of α
H(tγ )

i . Thus, A is unable to obtain the
real-time sensitive value mi,γ and the privacy of users’
electricity usage data is guaranteed.

– User electricity usage data and final result will not be
disclosed at GW. Recall that one main responsibility
of GW is to collect all user ciphertexts and aggregate
them into a single ciphertext C = ∏n

i=1(1 + mi,γ ·
p)

∏n
i=1 αi

H(tγ )mod p4. Assume that A has obtained
the ciphertext C by eavesdropping on the communica-
tion between GW and CC.Without CC’s private key α0,

A will learn nothing from C because of the disturbed
item

∏n
i=1 αi

H(tγ ) of C. In addition, since ui’s private
key αi is distributed by TA via a secure channel and the

disturbed item α
H(tγ )

i of ciphertext C̄i = (1 + mi,γ ·
p)α

H(tγ )

i mod p4 is changed at different reporting time
points, A will learn nothing about αi even if A has C̄i

in hand, without having the private key α0 of CC. For
a honest-but-curious GW, it is unable to obtain useful
information from the encrypted data C or C̄i without αi

and α0. Thus, individual user’s electricity usage data is
protected.

– Non-compromised user electricity usage data will not
be revealed. Assume that A has compromised several
users and obtained the secret information stored in the
SMs of these users. Since the private key of each user
is randomly chosen by TA, and knowing one user’s pri-
vate key reveals nothing about other private keys. Thus,
A is unable to violate the non-compromised users’
privacy simply by learning the secret information of
compromised users. Even in the extreme scenario that
A compromised n − 1 users and obtained their private

keys, A is still unable to obtain the remaining non-
compromised user’s private key and electricity usage data.

– User electricity usage data will not be forged. We con-
sider a stronger adversary A for the advanced FGDA
scheme who can forge or tamper a ciphertext of user

ui as the form C̄ = (1 + m̄i,γ · p) · ᾱ
H(tγ )

i . How-
ever, A does not know the shared secret key Kui−GW

between ui and GW. So, the adversary has to choose
a random number h (rather than the real hash value
of H(Kui−GW, IDj , C̄)). When GW receives the forged
report (IDi, C̄, h), it will reject this report because
the integrity check h = H(Kui−GW, IDj , C̄) will fail.
This ensures that GW aggregates only the ciphertexts of
legitimate users’ electricity usage data.

7 Performance evaluation

In this section, we compare the proposed scheme with
Chen et al.’s MuDA scheme [10], in terms of computation
overheads and communication costs.

7.1 Computation overheads

We focus on the computation overheads of common statis-
tical functions (i.e. average and variance) in both MuDA
and FGDA schemes. Tb,p denotes the computation time of
bilinear pairing, Tm,m the time of modular exponent mul-
tiplication, Tm,p the time of modular exponent power, and
Tp,l the time of Pollard’s lambda method.

To compute the average of n users’ power usage data in
a privacy-preserving form, GW in the MuDA scheme needs
to compute A1,γ = ∏n

i=1 Ci,γ after receiving users’ reports
Ci,γ = H(tγ )mi,γ ·hri,γ , where 1 ≤ i ≤ n. The total compu-
tation time of aggregation is (n − 1)Tm,m. While CC in the
MuDA scheme needs to computeA

p

1,γ and obtain the sum of
users’ data

∑n
i=1 mi,γ using the Pollard’s lambda method,

which results in a computation overhead Tm,p + Tp,l . In the
FGDA scheme, the total computation time of GW (comput-
ing C = ∏n

i=1 C̄i) is the same as in the MuDA scheme,

but CC (computing S′ = C · α
H(tγ )

0 modp2) only has a

Table 1 Computation overhead comparison between MuDA and
FGDA

GW CC

Average MuDA (n − 1)Tm,m Tm,p + Tp,l

FGDA (n − 1)Tm,m Tm,p + Tm,m

Variance MuDA 2(n − 1)Tm,m 2Tm,p + 2Tp,l

+(n + 1)Tb,p

FGDA (n − 1)Tm,m Tm,p + Tm,m
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Fig. 5 Communication flow comparison between MuDA and FGDA

computation overhead of Tm,p+Tm,m, which is significantly
lower than Tm,p + Tp,l in the MuDA scheme.

As for the variance of n users’ power usage data, GW in
the MuDA scheme needs to compute

A2,γ =e

(
n∏

i=1

Ci,γ ,

n∏

i=1

Ci,γ

)
and A3,γ =

n∏

i=1

e(Ci,γ , Ci,γ ),

which results in a computation overhead of 2(n − 1)Tm,m +
(n + 1)Tb,p. On the other hand, CC in the MuDA scheme
needs to compute A

p

2,γ and A
p

3,γ and then uses the Pol-

lard’s lambda method onA
p

2,γ andA
p

3,γ to obtain
∑n

i=1 m2
i,γ

and (
∑n

i=1 mi,γ )2. Thus, the computation overhead of CC
is 2Tm,p + 2Tp,l . In the proposed FGDA scheme, GW
makes the same computation for all three statistical func-
tions, which has a computation overhead of (n − 1)Tm,m.
For CC, the main computation overhead comes from the cal-

culation B = C · α
H(tγ )

0 , which results in a computation
overhead Tm,p + Tm,m.

A comparative summary is presented in Table 1. Consid-
ering that both the Pollard’s lambda method and the bilinear
pairing operation are computationally expensive compared
to modular exponent multiplication, it is clear that the pro-
posed FGDA scheme has a lower computation overhead
than the MuDA scheme.

7.2 Communication costs

We divide the communication flows into two parts: (1) from
user ui , 1 ≤ i ≤ n, to GW and (2) from GW to CC. In
part (1), each user ui in the MuDA scheme reports Ci,γ =
H(tγ )mi,γ hri,γ to GW (in which h is a subgroup generator
and ri,γ is a random number chosen by ui [10]), while ui in

our FGDA scheme reports Ci = (1 + mi,γ )α
H(tγ )

i to GW
(we omit the modulus for simplicity). This shows that the
MuDA and FGDA schemes have a similar communication
costs in part (1).

For part (2), GW in the MuDA scheme needs to send
A1,γ to CC for the average function, A2,γ and A3,γ for the

variance function, and A4=e(g, g)
∑s

j=1
∑n

i=1 m2
i,j ·e(g, h)R4 ,

A5 = e(g, g)
∑s

j=1(
∑n

i=1 mi,j )2 · e(g, h)R5 for the one-way
ANOVA function [10]. While in our FGDA scheme, GW
needs to send only one aggregated result C =∏n

i=1(1+mi,γ ·
p) · ∏n

i=1 αi
H(tγ ) to CC for all the three statistical functions

average, variance, and skewness (refer to Fig. 5). Therefore,
the FGDA scheme has a higher communication efficiency
than the MuDA scheme.

Now we consider the simulation results of the commu-
nication costs using two metrics: individual user costs and
overall costs. We set the security parameter κ = 512 and
thus, the size of ui’s report at a time point is |C̄i | = 512
bits (as in [10], we do not consider other payloads such as
user ID and time stamp, which are relatively short compared

Fig. 6 Individual communication costs in the FGDA and MuDA schemes
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Fig. 7 Overall communication costs in the FGDA and MuDA schemes

with the report). We denote Lp as the length of p and thus,
we have Lp = 512 bits. The communication costs of indi-
vidual user in our scheme are always Lp at every time point,
while the communication costs in the MuDA scheme are
2 · Lp = 1024 bits if the prime number p has the same size.
Each user ui in both schemes sends only one ciphertext to
GW at each report time point. Figure 6 illustrates the com-
parative summary of the individual communication costs for
the average and variance aggregations.

Finally, we consider the overall communication costs of
both the FGDA and MuDA schemes. In the FGDA scheme,
when CC wishes to compute the average of n users’ electric-
ity usage data, GW collects n users’ reports and aggregates
them into one report C for CC. Summing all n users’ com-
munication costs and the costs from GW to CC, we arrive at
a total communication cost of (n+1)Lp. On the other hand,
the total communication costs of average aggregation in the
MuDA scheme are 2(n + 1)Lp. When CC wishes to calcu-
late the variance of n users’ data, the total communication
costs of our FGDA scheme are still (n + 1)Lp. The corre-
sponding costs of theMuDA scheme are 2(n+2)Lp because
GW needs to send A2,γ and A3,γ to CC for the computa-
tion of the variance. As shown in Fig. 7, it is easy to see that
the proposed FGDA scheme significantly reduces the over-
all communication costs, especially when the number n of
users is large.

8 Conclusion

With the rapidly urbanization of our society, there is tremen-
dous pressure on traditional urban infrastructures. Hence,
it is not surprising that smart city and related initiatives
(e.g. smart grids) have been on the agendas of governments
and the research communities worldwide. While smart city

and related initiatives create new economic development
opportunities and can potentially enhance the quality of liv-
ing, there are underpinning security and privacy issues that
need to be resolved, particularly in the fast evolving cyber
threat landscape. One particular challenge is preserving the
privacy of users in smart grids.

In this paper, we proposed a fine-grained data analysis
(FGDA) scheme for smart grids. FGDA not only allows the
control center to compute several statistical functions (aver-
age, variance, skewness, etc) of users’ electricity usage data
in a privacy-preserving form, but also supports fault tolerant
feature. We then demonstrated the security of the proposed
scheme, as well as evaluating its performance. Specifically,
we demonstrated that the FGDA scheme achieves higher
communication efficiency and lower computation overhead.

Future research includes implementing a prototype of the
proposed scheme in collaboration with a smart grid operator
in a monitored environment. This would allow us to evalu-
ate and finetune the scheme, if necessary, to support other
desirable properties.
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